Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.352
Filtrar
1.
Curr Oncol ; 31(3): 1221-1234, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38534924

RESUMO

(1) Background: Cancer stem cells (CSCs) are a subpopulation of cells in a tumor that can self-regenerate and produce different types of cells with the ability to initiate tumor growth and dissemination. Chemotherapy resistance, caused by numerous mechanisms by which tumor tissue manages to overcome the effects of drugs, remains the main problem in cancer treatment. The identification of markers on the cell surface specific to CSCs is important for understanding this phenomenon. (2) Methods: The expression of markers CD24, CD44, ALDH1, and ABCG2 was analyzed on the surface of CSCs in two cancer cell lines, MDA-MB-231 and HCT-116, after treatment with 5-fluorouracil (5-FU) using flow cytometry analysis. A machine learning model (ML)-genetic algorithm (GA) was used for the in silico simulation of drug resistance. (3) Results: As evaluated through the use of flow cytometry, the percentage of CD24-CD44+ MDA-MB-231 and CD44, ALDH1 and ABCG2 HCT-116 in a group treated with 5-FU was significantly increased compared to untreated cells. The CSC population was enriched after treatment with chemotherapy, suggesting that these cells have enhanced drug resistance mechanisms. (4) Conclusions: Each individual GA prediction model achieved high accuracy in estimating the expression rate of CSC markers on cancer cells treated with 5-FU. Artificial intelligence can be used as a powerful tool for predicting drug resistance.


Assuntos
Inteligência Artificial , Neoplasias , Humanos , Linhagem Celular Tumoral , Família Aldeído Desidrogenase 1 , Fluoruracila/farmacologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias/patologia
2.
Cancer Med ; 13(3): e7004, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38400679

RESUMO

BACKGROUND: Embryonic pluripotency markers are recognized for their role in ER- BC aggressiveness, but their significance in ER+ BC remains unclear. This study aims to investigate the prevalence of expression of pluripotency markers in ER+ BC and their effect on survival and prognostic indicators. METHODS: We analyzed data of ER+ BC patients from three large cancer datasets to assess the expression of three pluripotency markers (NANOG, SOX-2, and OCT4), and the stem cell marker ALDH1A1. Additionally, we investigated associations between gene expression, through mRNA-Seq analysis, and overall survival (OS). The prevalence of mutational variants within these genes was explored. Using immunohistochemistry (IHC), we examined the expression and associations with clinicopathologic prognostic indicators of the four markers in 81 ER+ BC patients. RESULTS: Through computational analysis, NANOG and ALDH1A1 genes were significantly upregulated in ER+ BC compared to ER- BC patients (p < 0.001), while POU5F1 (OCT4) was downregulated (p < 0.001). NANOG showed an adverse impact on OS whereas ALDH1A1 was associated with a highly significant improved survival in ER+ BC (p = 4.7e-6), except for the PR- and HER2+ subgroups. Copy number alterations (CNAs) ranged from 0.4% to 1.6% in these genes, with the highest rate detected in SOX2. In the IHC study, approximately one-third of tumors showed moderate to strong expression of each of the four markers, with 2-4 markers strongly co-expressed in 56.8% of cases. OCT-4 and ALDH1A1 showed a significant association with a high KI-67 index (p = 0.009 and 0.008, respectively), while SOX2 showed a significant association with perinodal fat invasion (p = 0.017). CONCLUSION: Pluripotency markers and ALDH1A1 are substantially expressed in ER+ BC tumors with different, yet significant, associations with prognostic and survival outcomes. This study suggests these markers as targets for prospective clinical validation studies of their prognostic value and their possible therapeutic roles.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Estudos Prospectivos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Prognóstico , Estrogênios , Células-Tronco Embrionárias/metabolismo , Família Aldeído Desidrogenase 1 , Retinal Desidrogenase/genética
3.
Theranostics ; 14(2): 714-737, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38169509

RESUMO

Rationale: Current therapies for metastatic osseous disease frequently fail to provide a durable treatment response. To date, there are only limited therapeutic options for metastatic prostate cancer, the mechanisms that drive the survival of metastasis-initiating cells are poorly characterized, and reliable prognostic markers are missing. A high aldehyde dehydrogenase (ALDH) activity has been long considered a marker of cancer stem cells (CSC). Our study characterized a differential role of ALDH1A1 and ALDH1A3 genes as regulators of prostate cancer progression and metastatic growth. Methods: By genetic silencing of ALDH1A1 and ALDH1A3 in vitro, in xenografted zebrafish and murine models, and by comparative immunohistochemical analyses of benign, primary tumor, and metastatic specimens from patients with prostate cancer, we demonstrated that ALDH1A1 and ALDH1A3 maintain the CSC phenotype and radioresistance and regulate bone metastasis-initiating cells. We have validated ALDH1A1 and ALDH1A3 as potential biomarkers of clinical outcomes in the independent cohorts of patients with PCa. Furthermore, by RNAseq, chromatin immunoprecipitation (ChIP), and biostatistics analyses, we suggested the molecular mechanisms explaining the role of ALDH1A1 in PCa progression. Results: We found that aldehyde dehydrogenase protein ALDH1A1 positively regulates tumor cell survival in circulation, extravasation, and metastatic dissemination, whereas ALDH1A3 plays the opposite role. ALDH1A1 and ALDH1A3 are differentially expressed in metastatic tumors of patients with prostate cancer, and their expression levels oppositely correlate with clinical outcomes. Prostate cancer progression is associated with the increasing interplay of ALDH1A1 with androgen receptor (AR) and retinoid receptor (RAR) transcriptional programs. Polo-like kinase 3 (PLK3) was identified as a transcriptional target oppositely regulated by ALDH1A1 and ALDH1A3 genes in RAR and AR-dependent manner. PLK3 contributes to the control of prostate cancer cell proliferation, migration, DNA repair, and radioresistance. ALDH1A1 gain in prostate cancer bone metastases is associated with high PLK3 expression. Conclusion: This report provides the first evidence that ALDH1A1 and PLK3 could serve as biomarkers to predict metastatic dissemination and radiotherapy resistance in patients with prostate cancer and could be potential therapeutic targets to eliminate metastasis-initiating and radioresistant tumor cell populations.


Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Masculino , Humanos , Animais , Camundongos , Peixe-Zebra/metabolismo , Linhagem Celular Tumoral , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Neoplasias da Próstata/genética , Biomarcadores , Família Aldeído Desidrogenase 1 , Retinal Desidrogenase
4.
Anticancer Res ; 44(1): 37-47, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38160009

RESUMO

BACKGROUND/AIM: We have reported that p62 (also known as sequestosome 1) is needed for survival/proliferation and tumor formation by aldehyde dehydrogenase 1 (ALDH1) -positive cancer stem cells (CSCs) and that p62high ALDH1A3high expression is associated with a poor prognosis in luminal B breast cancer. However, the association between p62high ALDH1A3high and the benefit from radiotherapy in patients with luminal B breast cancer remains unclear. MATERIALS AND METHODS: Datasets from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) and The Cancer Genome Atlas (TCGA) were downloaded, and data from p62high ALDH1A3high luminal B patients treated without or with radiotherapy were analyzed by Kaplan-Meier and multivariate Cox regression analyses. We also performed an in vitro tumor sphere formation assay after X-ray irradiation using p62-knockdown ALDH1high luminal B BT-474 cells. RESULTS: p62high ALDH1A3high patients had poorer clinical outcomes than other luminal B breast cancer patients treated with radiotherapy. The combination of p62 DsiRNA KD and X-ray irradiation suppressed in vitro tumor sphere formation by ALDH1high BT-474 cells. These results suggest that p62 is involved in the reduced effect of X-ray irradiation on ALDH1-positive luminal B breast CSCs. CONCLUSION: p62 and ALDH1A3 may serve as prognostic biomarkers for luminal B breast cancer patients treated with radiotherapy. Additionally, the combination of p62 inhibition and radiotherapy could be useful for targeted strategies against ALDH1-positive luminal B breast CSCs.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/radioterapia , Neoplasias da Mama/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Mama/patologia , Família Aldeído Desidrogenase 1/metabolismo , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/metabolismo , Retinal Desidrogenase/metabolismo , Prognóstico
5.
Ecotoxicol Environ Saf ; 270: 115876, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38154155

RESUMO

Early life exposure to endocrine disrupting chemicals (EDCs) has been suggested to adversely affect reproductive health in humans and wildlife. Here, we characterize endocrine and adverse effects on the reproductive system after juvenile exposure to propiconazole (PROP) or imazalil (IMZ), two common azole fungicides with complex endocrine modes of action. Using the frog Xenopus tropicalis, two short-term (2-weeks) studies were conducted. I: Juveniles (2 weeks post metamorphosis (PM)) were exposed to 0, 17 or 178 µg PROP/L. II: Juveniles (6 weeks PM) were exposed to 0, 1, 12 or 154 µg IMZ/L. Histological analysis of the gonads revealed an increase in the number of dark spermatogonial stem cells (SSCs)/testis area, and in the ratio secondary spermatogonia: dark SSCs were increased in all IMZ groups compared to control. Key genes in gametogenesis, retinoic acid and sex steroid pathways were also analysed in the gonads. Testicular levels of 3ß-hsd, ddx4 were increased and cyp19 and id4 levels were decreased in the IMZ groups. In PROP exposed males, increased testicular aldh1a2 levels were detected, but no histological effects observed. Although no effects on ovarian histology were detected, ovarian levels of esr1, rsbn1 were increased in PROP groups, and esr1 levels were decreased in IMZ groups. In conclusion, juvenile azole exposure disrupted testicular expression of key genes in retinoic acid (PROP) and sex steroid pathways and in gametogenesis (IMZ). Our results further show that exposure to environmental concentrations of IMZ disrupted spermatogenesis in the juvenile testis, which is a cause for concern as it may lead to impaired fertility. Testicular levels of id4, ddx4 and the id4:ddx4 ratio were associated with the number of dark SSCs and secondary spermatogonia suggesting that they may serve as a molecular markers for disrupted spermatogenesis.


Assuntos
Fungicidas Industriais , Humanos , Masculino , Feminino , Animais , Fungicidas Industriais/metabolismo , Xenopus laevis , Azóis/toxicidade , Xenopus/metabolismo , Testículo , Espermatogênese , Hormônios Esteroides Gonadais/metabolismo , Tretinoína , Esteroides/metabolismo , Família Aldeído Desidrogenase 1/metabolismo , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/farmacologia , Retinal Desidrogenase/metabolismo
6.
J Appl Oral Sci ; 31: e20230227, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38126564

RESUMO

BACKGROUND: Lip squamous cell carcinoma (LSCC) accounts for 12% of all head and neck cancers. It is caused by chronic exposure to ultraviolet light solar radiation and related to previous actinic cheilitis (AC). This study aimed to investigate the immunostaining of the putative cancer stem cells (CSC) markers ALDH1 and CD44 in AC (n=30) and LSCC (n=20). ALDH1 positivity was found to be statistically higher in LSCC than in AC lesions (p=0.0045), whilst CD44 expression was statistically higher in AC than in LSCC lesions (p=0.0155). ALDH1+ cells in AC lesions were associated with specific clinical features: a younger age (<60 years old), the female gender, white skin, not smoking or consuming alcohol, and a fast evolution, and not associated with the chronic exposure to UV radiation (p<0.0001). CD44 positivity was associated with patients who were male, feoderm, smoked, consumed alcohol, underwent occupational exposure to UV-radiation, and demonstrated lesions with log-time evolution (p<0.0001). ALDH1 + cells were associated with mild dysplasia using a system from the World Health Organization (WHO), and with a low risk of malignant transformation, according to the binary system (p<0.0001). CD44+ cells were also associated with moderated dysplasia, according to the WHO system. In LSCC, ALDH1 + cells were positively associated with patients who were older (≥ 60 years old), smokers, and with those who consumed alcohol (p<0.0001). CD44 + cells in LSCC were associated with older (≥ 60 years old) patients as well, but also with female patients, white skin, non-smokers, and individuals who did not consume alcohol (p<0.0001), all of whom showed distinct patterns in pre- and malignant lesions of both markers. Additionally, in LSCC, both ALDH1 and CD44 staining were associated with smaller tumor sizes (T1/T2; p<0.0001). In summary, although both ALDH1 and CD44 were associated with the presence of dysplasia in AC lesions, the present findings suggest that ALDH1 and CD44 may be activated by different etiopathogenic pathways, predominantly in distinct steps of oral carcinogenesis. CD44 would thus be more significantly related to the potentially malignant lesion, while ALDH1 would be closely linked to malignancy.


Assuntos
Neoplasias Labiais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Família Aldeído Desidrogenase 1 , Biomarcadores Tumorais , Carcinogênese , Receptores de Hialuronatos/metabolismo , Lábio/metabolismo , Lábio/patologia , Neoplasias Labiais/etiologia , Neoplasias Labiais/metabolismo , Neoplasias Labiais/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/etiologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
7.
Cell Tissue Res ; 394(3): 515-528, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37904003

RESUMO

ALDH1A1 and ALDH1A3 paralogues of aldehyde dehydrogenase 1 (ALDH1) control myogenic differentiation of skeletal muscle satellite cells (SC) by formation of retinoic acid (RA) and subsequent cell cycle adjustments. The respective relevance of each paralogue for myogenic differentiation and the mechanistic interaction of each paralogue within RA-dependent and RA-independent pathways remain elusive.We analysed the impact of ALDH1A1 and ALDH1A3 activity on myogenesis of murine C2C12 myoblasts. Both paralogues are pivotal factors in myogenic differentiation, since CRISPR/Cas9-edited single paralogue knock-out impaired serum withdrawal-induced myogenic differentiation, while successive recombinant re-expression of ALDH1A1 or ALDH1A3, respectively, in the corresponding ALDH1 paralogue single knock-out cell lines, recovered the differentiation potential. Loss of differentiation in single knock-out cell lines was restored by treatment with RA-analogue TTNPB, while RA-receptor antagonization by AGN 193109 inhibited differentiation of wildtype cell lines, supporting the idea that RA-dependent pathway is pivotal for myogenic differentiation which is accomplished by both paralogues.However, overexpression of ALDH1-paralogues or disulfiram-mediated inhibition of ALDH1 enzymatic activity not only increased ALDH1A1 and ALDH1A3 protein levels but also induced subsequent differentiation of C2C12 myoblasts independently from serum withdrawal, indicating that ALDH1-dependent myogenic differentiation relies on different cellular conditions. Remarkably, ALDH1-paralogue knock-out impaired the autophagic flux, namely autophagosome cargo protein p62 formation and LC3B-I to LC3B-II conversion, demonstrating that ALDH1-paralogues interact with autophagy in myogenesis. Together, ALDH1 paralogues play a crucial role in myogenesis by orchestration of complex RA-dependent and RA-independent pathways.


Assuntos
Células Satélites de Músculo Esquelético , Tretinoína , Animais , Camundongos , Família Aldeído Desidrogenase 1 , Tretinoína/farmacologia , Células Satélites de Músculo Esquelético/metabolismo , Diferenciação Celular , Desenvolvimento Muscular , Aldeído Desidrogenase/metabolismo , Músculo Esquelético/metabolismo
8.
Chem Biol Interact ; 384: 110714, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37716420

RESUMO

Colon cancer is the third leading cause of cancer death globally. Although early screenings and advances in treatments have reduced mortality since 1970, identification of novel targets for therapeutic intervention is needed to address tumor heterogeneity and recurrence. Previous work identified aldehyde dehydrogenase 1B1 (ALDH1B1) as a critical factor in colon tumorigenesis. To investigate further, we utilized a human colon adenocarcinoma cell line (SW480) in which the ALDH1B1 protein expression has been knocked down by 80% via shRNA. Through multi-omics (transcriptomics, proteomics, and untargeted metabolomics) analysis, we identified the impact of ALDH1B1 knocking down (KD) on molecular signatures in colon cancer cells. Suppression of ALDH1B1 expression resulted in 357 differentially expressed genes (DEGs), 191 differentially expressed proteins (DEPs) and 891 differentially altered metabolites (DAMs). Functional annotation and enrichment analyses revealed that: (1) DEGs were enriched in integrin-linked kinase (ILK) signaling and growth and development pathways; (2) DEPs were mainly involved in apoptosis signaling and cellular stress response pathways; and (3) DAMs were associated with biosynthesis, intercellular and second messenger signaling. Collectively, the present study provides new molecular information associated with the cellular functions of ALDH1B1, which helps to direct future investigation of colon cancer.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Humanos , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Aldeído-Desidrogenase Mitocondrial/genética , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Família Aldeído Desidrogenase 1/metabolismo , Multiômica
9.
Proc Natl Acad Sci U S A ; 120(36): e2302342120, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37639589

RESUMO

Inhibition of overexpressed enzymes is among the most promising approaches for targeted cancer treatment. However, many cancer-expressed enzymes are "nonlethal," in that the inhibition of the enzymes' activity is insufficient to kill cancer cells. Conventional antibody-based therapeutics can mediate efficient treatment by targeting extracellular nonlethal targets but can hardly target intracellular enzymes. Herein, we report a cancer targeting and treatment strategy to utilize intracellular nonlethal enzymes through a combination of selective cancer stem-like cell (CSC) labeling and Click chemistry-mediated drug delivery. A de novo designed compound, AAMCHO [N-(3,4,6-triacetyl- N-azidoacetylmannosamine)-cis-2-ethyl-3-formylacrylamideglycoside], selectively labeled cancer CSCs in vitro and in vivo through enzymatic oxidation by intracellular aldehyde dehydrogenase 1A1. Notably, azide labeling is more efficient in identifying tumorigenic cell populations than endogenous markers such as CD44. A dibenzocyclooctyne (DBCO)-toxin conjugate, DBCO-MMAE (Monomethylauristatin E), could next target the labeled CSCs in vivo via bioorthogonal Click reaction to achieve excellent anticancer efficacy against a series of tumor models, including orthotopic xenograft, drug-resistant tumor, and lung metastasis with low toxicity. A 5/7 complete remission was observed after single-cycle treatment of an advanced triple-negative breast cancer xenograft (~500 mm3).


Assuntos
Aldeído Desidrogenase , Anticorpos , Humanos , Azidas , Carcinogênese , Química Click , Família Aldeído Desidrogenase 1 , Retinal Desidrogenase
10.
Asian Pac J Cancer Prev ; 24(8): 2781-2789, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37642065

RESUMO

OBJECTIVE: The aim of this study was to investigate the effect of mesenchymal stem cells-derived extracellular vesicles (MSC-EVs) on the human MCF7 breast cancer cell proliferation that have been considered to contain limited CSC population and its association with the expression of OCT4 and ALDH1 stemness markers. METHODS: EVs were successfully isolated from the conditioned medium of umbilical cord MSCs using size exclusion chromatography. The isolated EV fraction was verified under a transmission electron microscope (TEM). Five and ten percent (v/v) concentration of MSC-EVs were then co-cultured with MCF7 cells. To investigate MSC-EV uptake by MCF7 cells, we performed confocal microscopy analysis. Subsequently, the proliferation of co-cultured MCF7 cells was determined using trypan blue exclusion assay, while their mRNA and protein expression of OCT4 as well as ALDH activity as the marker of stemness properties were analyzed using quantitative reverse transcription polymerase chain reaction, Western Blot, and Aldefluor™ assays, respectively. RESULT: MSC-EVs were detected as round-shaped, ~100 nm sized particles under TEM. We also demonstrate that MSC-EVs can be internalized by MCF7 cells. Notably, MSC-EVs of 5% concentration increased OCT4 mRNA expression and ALDH1 activity in MCF7 cells. At 10% concentration, MSC-EVs reduced the OCT4 expression and ALDH1 activity. CONCLUSION: MSC-derived EVs modulate the stemness of MCF7 cells, either OCT4 expression or ALDH1 activity, in a concentration dependent manner along with the increase of cell proliferation.


Assuntos
Neoplasias da Mama , Vesículas Extracelulares , Células-Tronco Mesenquimais , Humanos , Feminino , Neoplasias da Mama/genética , Células MCF-7 , Família Aldeído Desidrogenase 1 , Proliferação de Células , RNA Mensageiro/genética
11.
Int J Mol Sci ; 24(11)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37298333

RESUMO

The protein family of aldehyde dehydrogenases (ALDH) encompasses nineteen members. The ALDH1 subfamily consists of enzymes with similar activity, having the capacity to neutralize lipid peroxidation products and to generate retinoic acid; however, only ALDH1A1 emerges as a significant risk factor in acute myeloid leukemia. Not only is the gene ALDH1A1 on average significantly overexpressed in the poor prognosis group at the RNA level, but its protein product, ALDH1A1 protects acute myeloid leukemia cells from lipid peroxidation byproducts. This capacity to protect cells can be ascribed to the stability of the enzyme under conditions of oxidant stress. The capacity to protect cells is evident both in vitro, as well as in mouse xenografts of those cells, shielding cells effectively from a number of potent antineoplastic agents. However, the role of ALDH1A1 in acute myeloid leukemia has been unclear in the past due to evidence that normal cells often have higher aldehyde dehydrogenase activity than leukemic cells. This being true, ALDH1A1 RNA expression is significantly associated with poor prognosis. It is hence imperative that ALDH1A1 is methodically targeted, particularly for the acute myeloid leukemia patients of the poor prognosis risk group that overexpress ALDH1A1 RNA.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Camundongos , Animais , Oxidantes , Retinal Desidrogenase/genética , Retinal Desidrogenase/metabolismo , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Leucemia Mieloide Aguda/genética , Proteínas , RNA , Família Aldeído Desidrogenase 1
12.
Biochem Biophys Res Commun ; 669: 85-94, 2023 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-37267864

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is the cancer with the poorest prognosis. One of the major properties reflecting its poor prognosis is high-grade heterogeneity, which leads to insensitivity to anticancer treatments. Cancer stem cells (CSCs) acquire phenotypic heterogeneity, generating abnormally differentiated cells by asymmetric cell division. However, the detailed mechanism leading to phenotypic heterogeneity is largely unknown. Here, we showed that PDAC patients with co-upregulation of PKCλ and ALDH1A3 had the poorest clinical outcome. PKCλ knockdown by DsiRNA in the ALDH1high population of PDAC MIA-PaCa-2 cells attenuated the asymmetric distribution of the ALDH1A3 protein. To monitor asymmetric cell division of ALDH1A3-positive PDAC CSCs, we established stable Panc-1 PDAC clones expressing ALDH1A3-turboGFP (Panc-1-ALDH1A3-turboGFP cells). In addition to MIA-PaCa-2-ALDH1high cells, turboGFPhigh cells sorted from Panc-1-ALDH1A3-turboGFP cells showed asymmetric cell propagation of ALDH1A3 protein. PKCλ DsiRNA in Panc-1-ALDH1A3-turboGFP cells also attenuated the asymmetric distribution of ALDH1A3 protein. These results suggest that PKCλ regulates the asymmetric cell division of ALDH1A3-positive PDAC CSCs. Furthermore, Panc-1-ALDH1A3-turboGFP cells can be useful for the visualization and monitoring of CSC properties such as asymmetric cell division of ALDH1A3-positive PDAC CSCs in time-lapse imaging.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Divisão Celular Assimétrica , Linhagem Celular Tumoral , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Família Aldeído Desidrogenase 1/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias Pancreáticas
13.
Asian Pac J Cancer Prev ; 24(6): 1863-1868, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37378913

RESUMO

BACKGROUND: ALDH1 is a cervical cancer stem cell marker that has radioresistance profile. Recurrence and metastasis following radiotherapy are still being problems of most patients. This study aimed to determine the correlation between ALDH1 and radiotherapy response in stage III squamous cell cervical carcinoma (SCCC) of the cervix. METHODS: A total 58 of 360 patients of stage III SCCC who received external beem radiation and brachytherapy (2016-2021) at Cipto Mangunkusumo Hospital met the eligibility criteria of this study. Pre- and post-irradiation MRI examinations and ALDH expression with immunohistochemistry (Santa Cruz®) were performed on formalin-fixed paraffin-embedded of pre-treatment cervical tissue biopsy taken from RSCM pathological anatomy laboratory. Patients were divided into two groups, complete responders vs non-complete responders. ALDH-1 scores were compared between two groups to assess ALDH-1 expression. The statistical analyses were carried out by SPSS 24. RESULTS: The optimal ALDH-1 score cut-off point on the radiation response was 166.05 pg/mL which was obtained from the analysis of the ROC curve. The AUC value was 0.682 with sensitivity and specificity, 63,6% and 64%, respectively. ALDH score ≥166.05 increased the risk by 3.127 times for not achieving complete response (adj OR 3.127, 95% CI 1.034 - 9.456, p = 0.043). Pre-radiation tumor size (p = 0.593), degree of differentiation (p = 0.161), renal abnormalities (p = 0.114), and keratinization (p = 0.477) were not associated with radiation response. CONCLUSIONS: High ALDH expression was associated with non-complete radiation response in stage III squamous cell cervical carcinoma. 
.


Assuntos
Braquiterapia , Neoplasias da Mama , Carcinoma de Células Escamosas , Neoplasias do Colo do Útero , Feminino , Humanos , Carcinoma de Células Escamosas/patologia , Células Epiteliais/patologia , Indução de Remissão , Família Aldeído Desidrogenase 1 , Neoplasias do Colo do Útero/patologia
14.
Neurosci Res ; 194: 58-65, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37146794

RESUMO

Lower motor neuron degeneration is the pathological hallmark of spinal muscular atrophy (SMA), a hereditary motor neuron disease caused by loss of the SMN1 gene and the resulting deficiency of ubiquitously expressed SMN protein. The molecular mechanisms underlying motor neuron degeneration, however, remain elusive. To clarify the cell-autonomous defect in developmental processes, we here performed transcriptome analyses of isolated embryonic motor neurons of SMA model mice to explore mechanisms of dysregulation of cell-type-specific gene expression. Of 12 identified genes that were differentially expressed between the SMA and control motor neurons, we focused on Aldh1a2, an essential gene for lower motor neuron development. In primary spinal motor neuron cultures, knockdown of Aldh1a2 led to the formation of axonal spheroids and neurodegeneration, reminiscent of the histopathological changes observed in human and animal cellular models. Conversely, Aldh1a2 rescued these pathological features in spinal motor neurons derived from SMA mouse embryos. Our findings suggest that developmental defects due to Aldh1a2 dysregulation enhances lower motor neuron vulnerability in SMA.


Assuntos
Atrofia Muscular Espinal , Camundongos , Humanos , Animais , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patologia , Neurônios Motores/metabolismo , Degeneração Neural/metabolismo , Modelos Animais de Doenças , Família Aldeído Desidrogenase 1/metabolismo , Retinal Desidrogenase/metabolismo
15.
Int J Biol Macromol ; 242(Pt 1): 124749, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37160174

RESUMO

Cyclophosphamide (CP) is one of the most widely used anticancer drugs for various malignancies. However, its long-term use leads to ALDH1A1-mediated inactivation and subsequent resistance which necessitates the development of potential ALDH1A1 inhibitors. Currently, ALDH1A1 inhibitors from different chemical classes have been reported, but these failed to reach the market due to safety and efficacy problems. Developing a new treatment from the ground requires a huge amount of time, effort, and money, therefore it is worthwhile to improve CP efficacy by proposing better adjuvants as ALDH1A1 inhibitors. Herein, the database constituting the FDA-approved drugs with well-established safety and toxicity profiles was screened through already reported machine learning models by our research group. This model is validated for discriminating the ALDH1A1 inhibitors and non-inhibitors. Virtual screening protocol (VS) from this model identified four FDA-approved drugs, raloxifene, bazedoxifene, avanafil, and betrixaban as selective ALDH1A1 inhibitors. The molecular docking, dynamics, and water swap analysis also suggested these drugs to be promising ALDH1A1 inhibitors which were further validated for their CP resistance reversal potential by in-vitro analysis. The in-vitro enzymatic assay results indicated that raloxifene and bazedoxifene selectively inhibited the ALDH1A1 enzyme with IC50 values of 2.35 and 4.41 µM respectively, whereas IC50 values of both the drugs against ALDH2 and ALDH3A1 was >100 µM. Additional in-vitro studies with well-reported ALDH1A1 overexpressing A549 and MIA paCa-2 cell lines suggested that mafosfamide sensitivity was further ameliorated by the combination of both raloxifene and bazedoxifene. Collectively, in-silico and in-vitro studies indicate raloxifene and bazedoxifene act as promising adjuvants with CP that may improve the quality of treatment for cancer patients with minimal toxicities.


Assuntos
Neoplasias , Cloridrato de Raloxifeno , Humanos , Cloridrato de Raloxifeno/farmacologia , Simulação de Acoplamento Molecular , Reposicionamento de Medicamentos , Ciclofosfamida/farmacologia , Neoplasias/tratamento farmacológico , Aldeído-Desidrogenase Mitocondrial , Família Aldeído Desidrogenase 1 , Retinal Desidrogenase
16.
Anticancer Res ; 43(5): 2145-2154, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37097684

RESUMO

BACKGROUND/AIM: This study aimed to examine the clinical significance of the protein expression of the cancer stem cell (CSC) markers ALDH1A1, CD133, CD44, and MSI-1 in primary and metastatic tissues of patients with breast cancer (BC). PATIENTS AND METHODS: ALDH1A1, CD133, CD44, and MSI-1 protein expression in pairs of primary and metastatic tissues of 55 patients with BC with metastases treated at Kanagawa Cancer Center between January 1970 and December 2016 were evaluated using immunohistochemical assay and their association with clinicopathological factors and survival was examined. RESULTS: There were no significant differences in CSC marker expression rates between primary and metastatic tissues for any CSC markers. Regarding the relationship between CSC marker expression in primary tissues and survival, patients with high CD133 expression had significantly lower recurrence-free survival (DFS) and overall survival. On multivariate analysis, they were also a poor independent predictor of DFS (hazard ratio=4.993, 95%CI=2.189-11.394, p=0.0001). In contrast, there was no significant association between the expression of any CSC marker in metastatic tissues and survival. CONCLUSION: CD133 expression in the primary BC tissue may be a useful risk factor for recurrence in patients with BC.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Células-Tronco Neoplásicas , Células-Tronco Neoplásicas/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Metástase Neoplásica , Biomarcadores Tumorais/metabolismo , Família Aldeído Desidrogenase 1/metabolismo , Retinal Desidrogenase/metabolismo , Antígeno AC133/metabolismo , Receptores de Hialuronatos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a RNA/metabolismo , Humanos , Feminino , Pessoa de Meia-Idade , Intervalo Livre de Doença , Japão
17.
J Vis Exp ; (193)2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37067271

RESUMO

Relapse after cancer treatment is often attributed to the persistence of a subpopulation of tumor cells known as cancer stem cells (CSCs), which are characterized by their remarkable tumor-initiating and self-renewal capacity. Depending on the origin of the tumor (e.g., ovaries), the CSC surface biomarker profile can vary dramatically, making the identification of such cells via immunohistochemical staining a challenging endeavor. On the contrary, aldehyde dehydrogenase 1A1 (ALDH1A1) has emerged as an excellent marker to identify CSCs, owing to its conserved expression profile in nearly all progenitor cells including CSCs. The ALDH1A1 isoform belongs to a superfamily of 19 enzymes that are responsible for the oxidation of various endogenous and xenobiotic aldehydes to the corresponding carboxylic acid products. Chan et al. recently developed AlDeSense, an isoform-selective "turn-on" probe for the detection of ALDH1A1 activity, as well as a non-reactive matching control reagent (Ctrl-AlDeSense) to account for off-target staining. This isoform-selective tool has already been demonstrated to be a versatile chemical tool through the detection of ALDH1A1 activity in K562 myelogenous leukemia cells, mammospheres, and melanoma-derived CSC xenografts. In this article, the utility of the probe was showcased through additional fluorimetry, confocal microscopy, and flow cytometry experiments where the relative ALDH1A1 activity was determined in a panel of five ovarian cancer cell lines.


Assuntos
Aldeído Desidrogenase , Neoplasias Ovarianas , Humanos , Feminino , Família Aldeído Desidrogenase 1/metabolismo , Retinal Desidrogenase/metabolismo , Linhagem Celular Tumoral , Aldeído Desidrogenase/metabolismo , Neoplasias Ovarianas/patologia , Células-Tronco Neoplásicas/patologia
18.
Nat Commun ; 14(1): 558, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732513

RESUMO

Type 2 diabetes (T2D) is associated with ß-cell dedifferentiation. Aldehyde dehydrogenase 1 isoform A3 (ALHD1A3) is a marker of ß-cell dedifferentiation and correlates with T2D progression. However, it is unknown whether ALDH1A3 activity contributes to ß-cell failure, and whether the decrease of ALDH1A3-positive ß-cells (A+) following pair-feeding of diabetic animals is due to ß-cell restoration. To tackle these questions, we (i) investigated the fate of A+ cells during pair-feeding by lineage-tracing, (ii) somatically ablated ALDH1A3 in diabetic ß-cells, and (iii) used a novel selective ALDH1A3 inhibitor to treat diabetes. Lineage tracing and functional characterization show that A+ cells can be reconverted to functional, mature ß-cells. Genetic or pharmacological inhibition of ALDH1A3 in diabetic mice lowers glycemia and increases insulin secretion. Characterization of ß-cells following ALDH1A3 inhibition shows reactivation of differentiation as well as regeneration pathways. We conclude that ALDH1A3 inhibition offers a therapeutic strategy against ß-cell dysfunction in diabetes.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Animais , Camundongos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/genética , Linhagem Celular Tumoral , Células Secretoras de Insulina/metabolismo , Família Aldeído Desidrogenase 1 , Aldeído Oxirredutases/metabolismo
19.
Int J Mol Sci ; 24(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36768723

RESUMO

Recurrent disease and treatment-associated chemoresistance are the two main factors accounting for poor clinical outcomes of ovarian cancer (OC) patients. Both can be associated with cancer stem cells (CSCs), which contribute to cancer formation, progression, chemoresistance, and recurrence. Hence, this study investigated whether the expression of known CSC-associated markers ALDH1A, CD44, and CD133 may predict OC patient prognosis. We analyzed their expression in primary epithelial ovarian cancer (EOC) patients using immunohistochemistry and related them to clinicopathological data, including overall survival (OS) and progression-free survival (PFS). Expression of ALDH1A1 was detected in 32%, CD133 in 28%, and CD44 in 33% of cases. While Kaplan-Meier analysis revealed no association of the expression of CD133 and CD44 with PFS and OS, ALDH1A1-positive patients were characterized with both significantly shorter OS (p = 0.00022) and PFS (p = 0.027). Multivariate analysis demonstrated that the expression of ALDH1A1, FIGO stage III-IV, and residual disease after suboptimal debulking or neoadjuvant chemotherapy correlated with shorter OS. The results of this study identify ALDH1A1 as a potential independent prognostic factor of shorter OS and PFS in EOC patients. Therefore, targeting ALDH1A1-positive cancer cells may be a promising therapeutic strategy to influence the disease course and treatment response.


Assuntos
Receptores de Hialuronatos , Neoplasias Ovarianas , Feminino , Humanos , Família Aldeído Desidrogenase 1/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinoma Epitelial do Ovário/patologia , Seguimentos , Receptores de Hialuronatos/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Prognóstico , Retinal Desidrogenase/metabolismo
20.
Esophagus ; 20(1): 134-142, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36121574

RESUMO

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a malignant cancer with a poor prognosis. Chemoradiotherapy is one of the most important strategies for patients with locally advanced unresectable ESCC; however, its therapeutic effect is unsatisfactory. Tumor-initiating cells (TICs) have been reported to be resistant to conventional chemotherapy and radiotherapy so far. Therefore, we aimed to develop a treatment strategy targeting TICs in ESCC to improve radiosensitivity. METHODS: First, we validated aldehyde dehydrogenase 1 (ALDH1) as a TIC marker and investigated its ability to mediate resistance in human ESCC cell lines using flow cytometry, Western blotting, and functional analyses. Then, we focused on disulfiram (DSF), an aldehyde dehydrogenase inhibitor, used to treat alcohol use disorder. We investigated the effect of DSF and copper (II) D-gluconate (Cu) on the radiosensitivity of ESCC in xenograft mouse models. RESULTS: ALDH1-positive cells showed an upregulation of SOX2 and Nanog, exhibiting much stronger tumor-initiating properties than ALDH1-negative cells. Furthermore, inhibition of ALDH1 attenuated the tumor-initiating properties of ESCC cell lines. Our results also showed that ALDH1-positive cells were resistant to chemotherapy and radiotherapy, and the inhibition of ALDH1 led to the mitigation of therapeutic resistance. Our in vitro and in vivo studies revealed that the DSF/Cu complex could radiosensitize ALDH1-positive ESCC cells and downregulate the phosphoinositide 3-kinase/Akt pathway. CONCLUSION: ALDH1 inhibition by the DSF/Cu complex enhances the radiosensitivity of TICs in ESCC. The drug repositioning approach using disulfiram is a potential treatment option to overcome radioresistance in patients with locally advanced ESCC.


Assuntos
Alcoolismo , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Animais , Camundongos , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/radioterapia , Dissulfiram/farmacologia , Dissulfiram/uso terapêutico , Cobre/farmacologia , Cobre/uso terapêutico , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/radioterapia , Neoplasias Esofágicas/metabolismo , Fosfatidilinositol 3-Quinases/uso terapêutico , Família Aldeído Desidrogenase 1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...